Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair

نویسندگان

  • Michal Gavish-Izakson
  • Bhagya Bhavana Velpula
  • Ran Elkon
  • Rosario Prados-Carvajal
  • Georgina D Barnabas
  • Alejandro Pineiro Ugalde
  • Reuven Agami
  • Tamar Geiger
  • Pablo Huertas
  • Yael Ziv
  • Yosef Shiloh
چکیده

The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATM-mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA double-strand break repair.

The cellular response to double-strand breaks (DSBs) in DNA is a complex signalling network, mobilized by the nuclear protein kinase ataxia-telangiectasia mutated (ATM), which phosphorylates many factors in the various branches of this network. A main question is how ATM regulates DSB repair. Here, we identify the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) as an ATM target. PNKP...

متن کامل

The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair

APLF is a forkhead associated-containing protein with poly(ADP-ribose)-binding zinc finger (PBZ) domains, which undergoes ionizing radiation (IR)-induced and Ataxia-Telangiectasia Mutated (ATM)-dependent phosphorylation at serine-116 (Ser(116)). Here, we demonstrate that the phosphorylation of APLF at Ser(116) in human U2OS cells by ATM is dependent on poly(ADP-ribose) polymerase 3 (PARP3) leve...

متن کامل

Lethality in PARP-1/Ku80 double mutant mice reveals physiological synergy during early embryogenesis.

Ku is an abundant heterodimeric nuclear protein, consisting of 70- and 86-kDa tightly associated subunits that comprise the DNA binding component of DNA-dependent protein kinase. Poly(ADP-ribose) polymerase-1 (PARP-1) is a 113-kDa protein that catalyzes the synthesis of poly(ADP-ribose) on target proteins. Both Ku and PARP-1 recognize and bind to DNA ends. Ku functions in the non-homologous end...

متن کامل

Essential role for DNA-PK-mediated phosphorylation of NR4A nuclear orphan receptors in DNA double-strand break repair.

DNA-dependent protein kinase (DNA-PK) is a central regulator of DNA double-strand break (DSB) repair; however, the identity of relevant DNA-PK substrates has remained elusive. NR4A nuclear orphan receptors function as sequence-specific DNA-binding transcription factors that participate in adaptive and stress-related cell responses. We show here that NR4A proteins interact with the DNA-PK cataly...

متن کامل

Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair

Poly (ADP-ribose) polymerase (PARP-1), ATM and DNA-dependent protein kinase (DNA-PK) are all involved in responding to DNA damage to activate pathways responsible for cellular survival. Here, we demonstrate that PARP-1-/- cells are sensitive to the ATM inhibitor KU55933 and conversely that AT cells are sensitive to the PARP inhibitor 4-amino-1,8-napthalamide. In addition, PARP-1-/- cells are sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2018